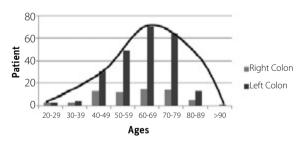


# Comment on analysis of 2222 colorectal polyps in 896 patients: A tertiary referral hospital study


To the Editor,

We have read "Analysis of 2222 colorectal polyps in 896 patients: A tertiary referral hospital study" by Solakoğlu et al. (1) with great interest. The authors described the distribution of colon polyps according to type, age, gender, and location in a large study from Turkey and discussed the importance of the sequence from polyp to colorectal cancer (CRC) (1). Polyp screening is the most important step to reduce the risk of CRC, but the timing (initial and stop) and tool for gastroenterologists (colonoscopy vs sigmoidoscopy) are still controversial issues for many countries (1-3), because each country has ethnic differences (Japanese, Koreans have a higher incidence of CRC than other Asian ethnic groups) and has changing environmental/epigenetic factors affecting the development of polyp and CRC (3). Thus, the correct strategy can be found by evaluation of both CRC and polyp screening studies.

Thus, we want to contribute our preliminary study of CRC containing important data of 301 patients. Of these, 164 were male (54.5%), and 137 were female (44.5%). The main diagnosis age was 62 (24-92) years, and the most frequent age intervals were 60-69 (28.2%), 70-79 (25.9%), and 50-59 (20.3%), respectively (Figure 1). CRC was observed in 74.6% and 21.4% in the left and right colon, respectively. Most of the patients were over than 50 years (82.6%), but approximately 20% of patients were under the age of 50 (17.6%) (Table 1). In this group (<50 years), CRC was most frequently observed in ages 40-49 (77.1%), and the most common tumor localizations were the rectum and right colon at a rate of 41.5% and 34%, respectively. The incidence of right colon tumor in patients under age 50 was significantly higher than in patients over the age of 50 (34% and 19%, p<0.005). Again, in right colon cancers, anemia is the most common laboratory upset (94.2% in right and 71.6% in left colon cancer, p<0.001).

In conclusion, polyp screening and CRC studies should be evaluated together to ensure the early detection of polyp and to decrease CRC risk. Each country should determine its own guidelines (CRC/polyp screening and surveillance) with large population studies. There is a big consensus on polyp/CRC screening, which initially should be started at the age of 50 and continued between 50-79 years (3). But, there is a huge gap in the literature about screening plans in average-risk patients younger than 50 years. According to these studies, we can say that a patient in the 40-49 age interval with anemia is the most suitable candidate for screening in patients younger than 50 years. As CRC chooses more proximal locations, screening should be done with colonoscopy.

**Conflict of Interest:** No conflict of interest was declared by the authors.



**Figure 1.** Age distribution of patients with colorectal carcinoma (CRC).

**Table 1.** Colorectal cancer (CRC) locations according to age <50 years and >50 years

|           |           | Locations   |             |            |
|-----------|-----------|-------------|-------------|------------|
|           |           | Left colon  | Right colon | Total (%)  |
| Age       | <50 years | 35 (66%)    | 18 (34%)    | 53 (100%)  |
|           | >50 years | 201 (81%)   | 47 (19%)    | 248 (100%) |
| Total (%) |           | 236 (78.4%) | 65 (21.6%)  | 301 (100%) |
| р         |           | p>0.05      | p<0.05      |            |

## Tarık Akar<sup>1</sup>, Gökhan Dindar<sup>1</sup>, Mustafa Şit<sup>2</sup>, İlyas Tenlik<sup>3</sup>, Emin Altıparmak<sup>3</sup>

<sup>1</sup>Department of Gastroenterology, Bülent Ecevit Faculty of Medicine, Zonguldak, Turkev

<sup>2</sup>Department of General Surgery, Abant İzzet Baysal University, Bolu, Turkey

<sup>3</sup>Department of Gastroenterology, Ankara Numune Educational and Research Hospital, Ankara, Turkey

## **REFERENCES**

- Solakoğlu T, Atalay R, Köseoğlu H, et al. Analysis of 2222 colorectal polyps in 896 patients: A tertiary referreal hospital study. Turk J Gastroenterol 2014; 25: 175-9. [CrossRef]
- 2. Labianca R, Nordlinger B, Beretta GD, et al. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013; 24 (Suppl 6): via64-72. [CrossRef]
- Sung JJ, Ng SC, Chan FK, et al. An updated Asia Pacific Consensus Recommendations on colorectal cancer screening. Gut 2014. doi: 10.1136/gutjnl-2013-306503. [Epub ahead of print] [CrossRef]

**Address for Correspondence:** Tarık Akar, Department of Gastroenterology, Bülent Ecevit Faculty of Medicine, Zonguldak, Turkey E-mail: drtarikakar@gmail.com

**Received:** 23.7.2014 **Accepted:** 25.7.2014

© Copyright 2014 by The Turkish Society of Gastroenterology • Available online at www. turkjgastroenterol.org • DOI: 10.5152/tjg.2014.8027

#### **Author's Reply**

To the Editor,

Your comments are valid and appreciated, and highlight on one of the problematic issues in the screening procedures and different diagnostic strategies of countries. Colorectal cancer (CRC) is the second leading cancer in Europe (1). European Parliament supported the efforts population-based CRC screening programs in the European. Mass screening for colorectal cancer using fecal occult blood test (FOBT) followed by colonoscopy in positive cases is very encouraging (2). Recently, CRC population screening has been performed by using FOBT in Turkey. Poland is the only country using colonoscopy as the only screening method, without the alternative of FOBT in Europe (3). The added value of screening colonoscopy compared with screening sigmoidoscopy is uncertain due to the absence of evidence from randomised controlled trails (4). Observational studies suggests that colonoscopy compared with flexible sigmoidoscopy decreases mortality from cancer of the proximal cancer. Recently several studies have reported the increased incidence of right-sided CRC in the elderly. Data of colorectal cancer statistics in 2014 showed that the most tumor location is the proximal colon (42%) and a notable increase was seen in proximal tumors with advancing age (5). Study from Turkey Seydaoğlu et al. (6) observed similar right-sided colon cancer shift. In our study we didnot evaluate the patients with CRC and excluded these patients from the study. So that we didnot have any data about patients with CRC in our study. We evaluated only polyps in our study and polyps were most commonly detected in those patients aged 50 to 59 years. The percentage of all patients over 50 years was 76.5% and the mean age of the patients was 59±13 years. We did not analyse the anatomic location of colorectal polyps according to age group. We determined only age distribution of patients with polyps. We applied the sureveillance colonoscopy after polypectomy by using standard guidelines developed by the European Society of Gastrointestinal Endoscopy and US Multi-Society Task Force on Colorectal Cancer. As you mentioned there are a limited number of studies including the prevalence of colorectal neoplasia with colonoscopic screening in asymptomatic average-risk individuals ages 40-49 years. İmperiale et al. (7) suggested that detection of colorectal cancer is uncommon in asymptomatic persons ages 40-49 years. Regula et al. (8) reported that advanced neoplasia was 5.9% in participants 50 to 66 years of age and 3.4% in participants 40 to 49 years of age with a family history of cancer of any type. These studies supported the screening guidelines for colorectal cancer at age 50 years. The detection rate of colorectal adenomas and cancers in patients ages 40 to 49 years increased by the widespread use of colonoscopy as a diagnostic test.

#### Tevfik Solakoğlu<sup>1</sup>, Hüseyin Köseoğlu<sup>2</sup>, Osman Ersoy<sup>2</sup>

<sup>1</sup>Department of Gastroenterology, Çorlu State Hospital, Tekirdağ, Turkey <sup>2</sup>Department of Gastroenterology, Yıldırım Beyazıt University, Faculty of Medicine, Ankara, Turkey

#### **REFERENCES**

- Riemann JF. Colonoscopy screening: status in Europe. Dig Dis 2011; 29: 53-5. [CrossRef]
- Manfredi S, Piette C, Durand G, Plihon G, Mallard G, Bretagne JF. Colonoscopy results of a French regional FOBT-based colorectal cancer screening program with high compliance. Endoscopy 2008; 40: 422-7. [CrossRef]
- Miroslav Zavoral, Stepan Suchanek, Filip Zavada, et al. Colorectal cancer screening in Europe. World J Gastroenterol 2009; 15: 5907-15. [CrossRef]
- 4. Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ 2014; 348: g2467. [CrossRef]
- Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin 2014; 64: 104-17. [CrossRef]
- Seydaoğlu G, Özer B, Arpacı N, Parsak CK, Eray IC. Trends in colorectal cancer by subsite, age, and gender over a 15-year period in Adana, Turkey: 1993-2008. Turk J Gastroenterol 2013; 24: 521-31.
- 7. Imperiale TF, Wagner DR, Lin CY, Larkin GN, Rogge JD, Ransohoff DF. Results of screening colonoscopy among persons 40 to 49 years of age. N Engl J Med 2002; 346: 1781-5. [CrossRef]
- Regula J, Rupinski M, Kraszewska E et al. Colonoscopy in colorectal-cancer screening for detection of advanced neoplasia. N Engl J Med 2006; 355: 1863-72. [CrossRef]

Address for Correspondence: Tevfik Solakoğlu, Department of Gastroenterology, Çorlu State Hospital, Tekirdağ, Turkey E-mail: tfksolak@yahoo.com.tr