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ABSTRACT
Background/Aims: To screen cuproptosis-related genes (CRGs) and construct a prognosis risk model for hepatocellular carcinoma 
(HCC) based on transcriptome data.
Materials and Methods: Transcriptome, gene expression, and clinical data of HCC were downloaded from the Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases to screen CRGs. Differential genes were screened, and Cox analysis and LASSO 
regression analysis were performed. The clinical value of the constructed model for HCC patients was assessed. Patient survival rates 
were predicted. The expression of relevant genes in liver cancer tissues and adjacent tissues was verified, and the prognostic risk for 
patients was evaluated.
Results: Nineteen CRGs were identified, and 15 genes were expressed differently in tumor tissues and normal tissues. Multivariate analy-
sis and LASSO regression analysis showed that 15 genes related to prognostic risk were screened, based on which a prediction model of 
9 CRGs was constructed. High-risk patients, as determined by the prognostic model, showed a significantly decreased survival rate rela-
tive to low-risk patients. Tumor microenvironment and drug sensitivity were closely related to risk scores. Nomograms predicted survival 
probabilities for liver cancer patients over 1-, 3-, and 5-year periods at 91.6%, 62.4%, and 56.3%, respectively. Reverse transcription-
quantitative polymerase chain reaction experiments verified the relevant gene expression that made up the model in liver cancer and 
adjacent tissues.
Conclusion: The constructed prognostic risk model can predict the prognosis of HCC well and may be used for risk stratification, immu-
notherapy evaluation, and drug susceptibility analysis.
Keywords: Cuproptosis-related genes, hepatocellular carcinoma, prognostic risk model

INTRODUCTION
Liver cancer stands as the third most common cause of 
cancer-related deaths across the globe.1 Major risk fac-
tors for hepatocellular carcinoma (HCC) include hepatitis 
B virus (HBV) or hepatitis C virus (HCV) infection, chronic 
alcohol consumption, and diabetes. It is rare for surgi-
cal resection to cure early liver cancer in most patients.2 
The opportunity for radical surgery is often lost because 
most liver cancer patients are diagnosed at an interme-
diate to advanced stage. Hepatocellular carcinoma is the 
predominant form of primary liver cancer, with approxi-
mately 830 000 new cases reported globally in 2020.3 
An increasing number of combination therapies, such 
as immune checkpoint inhibitors in combination with 
tyrosine kinase inhibitors, are currently being tried, but 
the prognosis is still suboptimal. In spite of studies dem-
onstrating major risk factors,4 the pathogenesis of HCC 
is not yet fully understood.5 As a highly heterogeneous 
malignant tumor, there is an urgent need to clarify the key 
factors involved in the development of HCC, explore its 

underlying mechanisms, and search for new and effective 
therapeutic targets.

Tumor development may be affected by copper imbal-
ance through oxidative stress in the body.6 Copper targets 
lipidized tricarboxylate circulating proteins to induce cell 
death, which is associated with a variety of liver diseases. 
Copper ions bind directly to the lipoylated parts of the 
tricarboxylic acid cycle, creating proteotoxic stress that 
leads to cell death.7,8 Hepatocellular carcinoma cells show 
an increased synthesis of copper-binding proteins, which 
in turn leads to a significant increase in the copper content 
of the cell cytoplasm and a weakened ability to counteract 
the oxidative stress damage associated with copper over-
load.9 A cohort study showed a correlation between serum 
copper levels and the prognosis of HCC patients, with 
higher concentrations associated with a worse progno-
sis.10 Mitochondrial metabolic reprogramming is also one 
of the phenomena that often accompany copper imbal-
ance, leading to excess ROS production and thus cellular 

37

1

mailto:QingsongWuxw@outlook.com
http://orcid.org/0009-0003-6780-0432


Huang and Wu. Cuproptosis-based prognostic model in LCTurk J Gastroenterol 2026; 37(1): 75-87

76

oxidative stress.11 CuO nanoparticles can induce apoptosis 
of HCC HepG2 cells through reactive oxygen species (ROS) 
via the mitochondrial pathway.12 Copper-based therapies 
show the potential to inhibit tumor growth, especially for 
tumors that are insensitive to chemotherapy, and may 
provide new strategies for cancer treatment.13 However, 
there is still a need to investigate the mechanisms by 
which copper toxicity genes contribute to HCC.

Exploring the predictive significance of cuproptosis-
related genes (CRGs) and their link to tumor mutations 
and immunotherapy involved gathering liver cancer 
specimens from The Cancer Genome Atlas (TCGA) and 
Integrated Gene Expression Omnibus (GEO) databases 
to thoroughly examine CRGs’ expression, mutation con-
dition, and copy number differences. By analyzing the 
differential expression and prognostic analysis of CRGs, 
a new prognostic gene model was constructed and its 
efficacy was verified. Additionally, pathway analyses 
were performed to further evaluate the model’s value in 
molecular therapy by exploring the impact of risk scores 
on tumor mutation load and immunotherapy.

MATERIALS AND METHODS
Research Workflow
The research workflow diagram for this study is shown in 
Supplementary Figure 1.

Collection and Processing of Multi-Omics Data
By accessing the TCGA database (https://​portal.g​dc.cance​
r.gov/), data on gene transcriptomes (n = 424), clinical fea-
tures (n = 377), and gene mutations (n = 364) from liver 
cancer patients were downloaded. Data in TPM format 
were extracted from this and normalized to log2 (TPM+1), 
and samples with RNA-Seq data and clinical informa-
tion were ultimately retained. Next, through access to 
the GEO database (https://​www.ncbi​.nlm.nih​.gov/geo​
/), the GSE76427 data sets were downloaded to obtain 

corresponding gene expression profile data and clinical 
data containing prognostic information. The relevant files 
from the TCGA data set were converted and processed 
using a Perl script to obtain liver cancer gene expression 
files and clinical data files, the samples with incomplete 
information were removed, and the data were normalized. 
The GEO database and TCGA data were merged to iden-
tify the intersection. The clinical features of all patients 
with HCC are shown in Table S1. Consensus analysis was 
performed using the “ConsensusClusterPlus” R package, 
and an unsupervised cluster analysis was performed on all 
samples from TCGA and GEO to identify patient subtypes 
based on prognosis-related differentially expressed genes 
(DEGs) . A heatmap of DEGs associated with prognostic 
CRGs was created using the “pheatmap” package, and to 
assess differences in gene expression between subtypes 
and produce box plots, the Kruskal–Wallis test was used.

Data on RNA sequencing, along with associated clinical 
and subsequent details, were sourced from the TCGA and 
GEO (GSE76427) databases. This research incorporated 
liver cancer patients for subsequent examination. Data on 
tumor node metastasis (TNM) stage, pathological grade, 
age, gender, duration of follow-up, and survival condition 
were collected. Nineteen regulatory genes associated 
with the metabolic pathway of copper toxicity26 have 
been identified, including NLRP3, NFE2L2, DLST, ATP7A, 
FDA1, DLD, LIPT1, PDHA1, DLAT, PDHB, GCSH, GLS, 
MTF1, DBT, and CDKN2A, as well as 4 negatively regu-
lated genes, FDX1, LIAS, SLC31A1, and ATP7B (Table S2).

Screening, Identification, and Prognostic Analysis of 
Cuproptosis-Related Genes
The RNA-Seq data of all samples were normalized using 
the R software’s limma package to analyze the differential 

Main Points
•	 Nineteen cuproptosis-related genes were identified, and 

15 genes were expressed differently in tumor tissues and 
normal tissues.

•	 Patient survival was significantly lower in the high-risk 
group, according to the prognostic model.

•	 Tumor microenvironment and drug sensitivity were closely 
related to risk scores.

•	 Reverse transcription-quantitative polymerase chain reac-
tion experiments verified relevant gene expression that 
made up the model in liver cancer and adjacent tissues.

Table 1.  Primer Sequence

Gene Forward primer (5’ →3’) Reverse primer (5’ →3’)

S100A9 CAGCTGAGCTTCGAGGAGGTT CGTGCATCTTCTCGTGGGAG

FTCD ATGTCCCAGCTGGTGGAATG CCAGGTACTCGATGATCCGC

POF1B CTCTGCACACTGGCAACAAC CCGCAACTTGGAGAGTTCCT

IL7R AAATATGTGGGGCCCTCGTG AAGTCATTGGCTCCTTCCCG

MYO1E GCAAGTGCAGTTCCACCAAG TCCTTCTGGTAGGACGGGAG

SPINK1 TGACTCCCTGGGAAGAGAGG AGTCCCACAGACAGGGTCAT

CXCL9 TGAGAAAGGGTCGCTGTTCC GGGCTTGGGGCAAATTGTTT

AGFG1 GGTGGTGATCAGGGAAGTGG ACCAGCAGCAGCAACAAATG

IQGAP3 TGGGATTGGCCCCTCAGATA AGCTCCTTCACAGTGTCAGC

GAPDH GTCAAGGCTGAGAACGGGAA AAATGAGCCCCAGCCTTCTC

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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expression of genes between normal tissues and tumor tis-
sues. The intersecting genes were obtained by processing 
the gene data from the TCGA database with the “limma” 
and “sva” packages of R v4.3.0 (R foundation for Statistical 
Computing; Vienna, Austria). After excluding all normal 
samples, the remaining tumor samples were merged to cre-
ate an integrated gene expression file for liver cancer tumor 
samples. Cuproptosis-related genes were screened using 
the R “limma” package to identify DEGs between normal 
and tumor tissues. P-values less than .05 were considered 
to be significantly different. The “maftools” and “RCircos” 
packages were used to analyze CRG mutations and copy 

number variation (CNV), and one-way Cox regression anal-
ysis was performed using the R language software package 
“survival” to screen the correlation between the previously 
obtained DEG levels and clinical prognosis.

Model Construction and Verification
According to the random sampling method, all samples 
were divided into a train group, a test group, and an all 
group at a 1:1 ratio. For the training set data, one-factor 
significant gene expression matrices were analyzed using 
least absolute shrinkage and selection operator (LASSO) 
regression via the “glmnet” package in the R software, with 

Figure 1.  Expression and gene changes of CRGs in liver cancer. A: Distribution of differential expression of CRGs in tumor tissues and normal 
tissues in the TCGA dataset. B: Frequencies of CNV gain, loss, and non-CNV among CRGs. Red indicates copy number gain, and green 
indicates copy number loss. C: Circos plots of chromosome distribution of CRGs. Outer circles represent chromosomes; inner circles represent 
locations corresponding to CRGs; red is copy number gain of CRGs, blue is loss, and black is no significant gain or loss. D: Tumor mutation 
frequencies of CRGs. Horizontal coordinates represent HCC mutation load samples, vertical coordinates represent CRGs on the left side, 
while the right side represents the mutation frequencies of the corresponding genes; nonsense mutations are shown in red, missense 
mutations in green, splice sites in orange, deletions in yellow, multiple mutations in black, and no mutations in gray (*P < .05, **P < .01, 
***P < .001). CNV, copy number variation; CRGs, cuproptosis-related genes.
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a 10-fold cross-validation to select the optimal penalty 
coefficient (λ) for the LASSO significant gene expression 
data. A multifactorial Cox analysis of the genes significant 
in LASSO was performed using the R language software 
“survival” package to create a risk score model. Patient 
classification was based on the median risk score, verified 
through receiver operating characteristic (ROC) analysis. 

To evaluate the prognostic risk model’s effectiveness as 
an independent predictor of prognosis in HCC patients, 
both univariate and multivariate Cox regression analyses 
were conducted using the log-rank test, where a P-value 
below .05 indicated a statistically significant difference. 
The R software packages used here include timeROC, 
survival, and survminer. Overall survival (OS) results were 
compared using Kaplan–Meier analysis across all cohorts. 
In addition, prognostic differences between subgroups by 
clinical stage were analyzed.

Constructing a Nomogram to Evaluate the Prognosis of 
Patients with Liver Cancer
Cox regression analyses were conducted on both uni-
variate and multivariate data to identify possible inde-
pendent prognostic factors. A nomogram was developed 
using the R “rms” package, taking into account risk scores 
and clinical factors such as gender, age, and tumor stage. 
Furthermore, calibration curves were generated for 1, 3, 
and 5-year OS in order to compare the model with actual 
performance. A consistency index (C-index) was also cal-
culated using the C-index method to measure the align-
ment between the predicted outcomes and the actual 
observations. A higher C-index indicates a greater degree 
of accuracy for the predictive model.

Table 2.  Analysis of Survival Prognosis of Cuproptosis-Related Genes

Genes HR (95% CI) P (Cox) P (KM)

NFE2L2
NLRP3
ATP7B
ATP7A
SLC31A1
FDX1
LIAS
LIPT1
DLD
DLAT
PDHA1
PDHB
MTF1
GLS
CDKN2A
DBT
GCSH
DLST

1.244(1.010-1.532)
1.302(0.957-1.770)
0.939(0.764-1.156)
1.409(1.051-1.890)
0.969(0.783-1.200)
0.988(0.767-1.273)
0.993(0.694-1.420)
2.042(1.401-2.977)
1.154(0.908-1.467)
1.318(1.107-1.570)
1.322(1.001-1.745)
1.422(1.046-1.934)
1.330(0.999-1.772)
1.199(1.044-1.379)
1.152(1.017-1.305)
1.015(0.791-1.304)
1.385(0.969-1.979)
1.098(0.845-1.426)

.0400.040
.093
.553
.022
.775
.927
.967
.001
.242
.002
.049
.025
.051
.010
.026
.905
.074
.484

.005

.025

.024

.009

.065

.046

.080
6.66E-06

.024
.001

6.45E-05
.001
.018
.004
.002
.163
.018
.005

Figure 2.  Prognostic significance of CRGs in patients with HCC. A-O: Kaplan–Meier analysis between 15 highly and lowly expressed CRGs 
with OS in HCC patients. CRGs, cuproptosis-related genes; HCC, Hepatocellular carcinoma; OS, overall survival.
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Collection and Processing of Tissue Samples
A total of 18 cases of cancer and their paired normal tis-
sues were obtained from liver cancer patients undergo-
ing surgery at the hospital. This study was approved by 
the Research Ethics Committee of Shantou University 
Affiliated Yuebei People‘s Hospital (Approval No. 
202205GD93; approval date: May 23, 2022), and each 
patient provided written informed consent. Inclusion 
criteria were as follows: (1) Radical hepatectomy or 
hepatectomy for HCC and a clear postoperative patho-
logical diagnosis; (2) primary tumor surgery and no prior 
radiotherapy, chemotherapy, immunotherapy, or other 
neoadjuvant therapy; (3) no previous tumor history; (4) 
complete clinicopathological data of patients; and (5) 
no obvious acute inflammatory diseases. Exclusion cri-
teria were as follows: (1) Patients with tumors at other 
sites; (2) samples of small cancer tissue that would 
affect postoperative pathology; and (3) postoperative 
follow-up time of less than 1 month or loss to follow-
up. The tissue sampling criteria were as follows: (1) 

Sampling should be completed within 30 minutes after 
isolation. At least 1 pair of liver cancer tissue and para-
cancer tissue should be collected from each patient. 
The central part of the tumor should be removed, and 
the para-cancer tissue should be removed from the 
edge of the tumor above 3 cm; (2) after 2 washes with 
PBS, the necrotic tissue was removed, and the remain-
ing tissue was cut into tissue blocks with a diameter 
of about 0.5 cm, which were respectively put into 1.5 
mL EP tubes, immersed with RNALater, and stored in 
a refrigerator at −80°C; and (3) 18 liver cancer samples 
and 18 para-cancer samples were selected for reverse 
transcription-quantitative PCR (RT-qPCR) and col-
lected at the same time.

Reverse Transcription-Quantitative Polymerase Chain 
Reaction
Total RNA was extracted using Trizol reagent 
(ThermoFisher). cDNA synthesis corresponding to mRNA 
was carried out using the PrimeScript RT kit with gDNA 

Figure 3.  Model construction, model risk score relationship, and difference analysis of CRGs. A: Alluvial diagram of subgroup distributions 
in groups with different model risk scores and prognostic outcomes. B: Differences in risk_score between the 2 angiogenesis clusters.  
C: Differences in risk_score between the 2 gene clusters. D: Expression of CRGs in the high and low-risk groups. CRGs, cuproptosis-
related genes.
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Eraser (Takara) and SYBR Green qPCR Master Mix kit 
(Beyotime). Reverse transcription-quantitative poly-
merase chain reaction was performed with specific PCR 
primers. The internal reference gene was GAPDH. The 
primers are listed in Table 1.

Statistical Analysis
Statistical analysis and data processing were performed 
using Perl software v5.30.0 (The Perl Foundation, Texas, 
USA) and R software v4.2.2 (R Foundation for Statistical 
Computing; Vienna, Austria). Continuous variables are 
indicated as mean ± SD. Reverse transcription-quanti-
tative polymerase chain reaction was performed with 
specific primers. Cuproptosis-related genes (CRGs) and 
differentially expressed CRGs (DECRGs) were analyzed 
using Kruskal–Wallis rank sum testing. The clinicopatho-
logical features of the training set and the test set were 
analyzed using the chi-square test. Log-rank tests were 
employed to compare OS with median OS, while Wilcoxon 
tests were used to examine the relationship between 
characteristic genes and immune checkpoint expres-
sion. The Spearman technique was used for correlational 

studies, the Wilcoxon test for intergroup comparisons, 
Cox regression for assessing survival risk and hazard ratio 
(HR), LASSO regression for developing risk models, and 
Kaplan–Meier and log-rank tests for contrasting sur-
vival disparities among groups. A P-value below .05 was 
deemed to hold statistical significance.

RESULTS
Screening, Identification, and Analysis of Prognostic 
Cuproptosis-Related Genes
Among the 19 CRGs included in this study, 15 were dif-
ferentially expressed in normal tissue and tumor samples 
(Figure 1A), among which 6 were downregulated genes 
and 13 were upregulated genes. Among 371 liver cancer 
samples, 38 (10.24%) had CRG mutations (Figure 1B), 4 
genes had CNV deletions, and 10 genes had CNV increases 
(Figure 1C). The CNVs of CRGs across 23 chromosomes 
were obtained (Figure 1D).

Univariate Cox regression and Kaplan–Meier analyses 
showed 15 genes correlated significantly with liver can-
cer prognosis (P < .05) (Table 2). NLRP3, NFE2L2, DLST, 

Figure 4.  Risk curves for each group. A, B, and C are the all group; D, E, and F are the train group; and G, H, and I are the test group. The X-axis 
for each group is shared, representing the shared ascending risk score sample. A, D, G: Risk curves for high- and low-risk groups in the 
prognostic model (Y-axis is risk score). B, E, H: Scatterplot of patient survival in high- and low-risk groups in the prognostic model (Y-axis is 
survival time; blue represents survival, red represents death). From left to right, there are more and more red dots, fewer and fewer blue dots, 
and survival time is getting shorter and shorter. C, F, I: Risk heatmap of high- and low-risk groups in the prognostic model.



Huang and Wu. Cuproptosis-based prognostic model in LC Turk J Gastroenterol 2026; 37(1): 75-87

81

ATP7A, DLD, LIPT1, PDHA1, DLAT, PDHB, GCSH, GLS, 
MTF1, DBT, and CDKN2A were high-risk prognostic genes 
(HR > 1, P < .05). FDX1, LIAS, SLC31A1, and ATP7B were 
protective genes (HR < 1, P < .05). The Kaplan–Meier curve 
illustrates that patients with HCC exhibiting elevated 
ATP7B and FDX1 gene levels experienced a prolonged OS 
in contrast to those with lower expression, whereas those 
with high expression levels had a reduced OS compared 
to their low expression counterparts (Figure 2).

Prognostic Risk Model Based on Cuproptosis-Related 
Genes
Sankey’s chart was plotted to illustrate the distribu-
tion of subtypes, model risk scores, and prognosis from 
cluster analysis (Figure 3A). First, 487 patients were ran-
domly divided into a train set (n = 244) and a test set (n 
= 243). Univariate Cox and LASSO regression analyses 
were performed on 15 DEGs. Nine prognostic risk genes 

(AGFG1, IQGAP3, MYO1E, FTCD, POF1B, IL7R, S100A9, 
CXCL9, and SPINK1) were screened out (Figure 3B-3D), 
and the prognostic model of the 9 genes was constructed 
with risk score = (0.8186 * AGFG1 expression) + (0.3142 
* IQGAP3 expression) + (−0.6841 * MYO1E expres-
sion) + (−0.2103 * FTCD expression) + (0.1900 * POF1B 
expression) + (−0.2288 * IL7R expression) + (0.0903 
* S100A9 expression) + (−0.1591 * CXCL9 expres-
sion) + (0.0787 * SPINK1 expression).

Patients were split into high-risk and low-risk groups 
according to the median risk score, with risk curves plot-
ted for the train group, the test group, and all groups 
(Figure 4). The risk of death increased with the risk score 
in the train, test, and all groups. Meanwhile, the differen-
tial expression of CRGs between high and low-risk groups 
was observed, including 4 downregulated genes (MYO1E, 
FTCD, IL7R, and CXCL9) and 5 upregulated genes (AGFG1, 
IQGAP3, POF1B, S100A9, and SPINK1).

Figure 5.  Model survival curve analysis and ROC curve. A and D are the all group, B and E are the test group, and C and F are the train group. 
A-C: survival analysis of high- and low-risk groups in the prognostic model. D: Survival prediction analysis with ROC curves according to the 
prognostic model.
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Figure 6.  Assessment of the effect of forest maps and array maps in independent prognostic analysis. A: Univariate Cox analysis of factors 
influencing hepatocellular carcinoma prognosis. B: Multivariate Cox analysis of independent factors influencing hepatocellular carcinoma 
prognosis.

Figure 7.  Assessment of the effect of forest maps and nomograms in independent prognostic analyses. A: Nomogram for predicting the 1-, 
3-, and 5-year overall survival of hepatocellular carcinoma patients in the entire cohort. B: C-Index curves.

Figure 8.  Survival curves of high-risk and low-risk patients with different tumor stages. A: Tumor stage I to II. B: Tumor stage III to IV.
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In the case of DEGs, patients were arbitrarily segregated 
into train, test, and all groups. The Kaplan–Meier analysis 
revealed that individuals in the high-risk group of the train 
group had a much shorter survival duration than those in 
the low-risk group (P < .05). Similar results were observed 
across the test and all groups (all P < .05) (Figure 5). The 
ROC analysis of the model was conducted using the 
“timeROC package” in R software, and ROC curves were 
generated for 1, 3, and 5 years. The 1-year, 3-year, and 
5-year area under the curve (AUC) of the all groups were 
0.785, 0.757, and 0.770, respectively, indicating that the 
prognostic risk model had good predictive performance 
(Figure 5). The model was validated using univariate and 
multivariate Cox regression analyses. According to the 
forest plot, OS was significantly correlated with risk score 
and clinical stage, whereas gender and age could not be 
used as independent factors to determine prognosis 
(Figure 6).

Predictive Value of the Model
A total score of 122 points was obtained by consider-
ing the contributions of different factors to the survival 
rate. The rates for 1-year, 3-year, and 5-year survival were 
93.1%, 84.8%, and 74.2%, respectively. The nomogram’s 
calibration curve demonstrated superior predictive abil-
ity for 1-year, 3-year, and 5-year survival compared to 
the ideal model (Figure 7A). C-index analysis showed 
that the C-index of the model was 0.700, indicating that 
the nomogram had a relatively good prognostic value 
(Figure 7B). Finally, a clinical stratification analysis was 

performed to determine clinical factors (tumor stage). 
Results demonstrated a marked improvement in sur-
vival rates for low-risk patients with stage I-II or stage 
III-IV tumors compared to high-risk patients (P < .001) 
(Figure 8).

Differential Expression Analysis and Prognosis Analysis 
of Model Genes
The reliability of the model was further explored by con-
ducting a differential analysis of gene expression on TCGA 
data. The analysis of TCGA liver cancer data showed that 
the expressions of AGFG1, IQGAP3, SPINK1, CXCL9, 
MYO1E, and POF1B were significantly increased in tumor 
tissues (Figure 9). The expressions of S100A9, FTCD, 
and IL7R were increased in normal tissues. The Kaplan–
Meier Plotter (http://k​mplot.co​m/analys​is/index​.php?p=s​
ervice) was used for analyzing model genes and OS of 
HCC patients. Hepatocellular carcinoma patients’ prog-
nosis was significantly impacted by all 9 genes, according 
to the KM curve (Figure 10).

Expression of Prognostic Genes in Liver Cancer and 
Normal Tissues
Through bioinformatics analysis, a prognostic model of 
liver cancer associated with 9 DECRGs was obtained. 
Normal tissues exhibited higher levels of S100A9, FTCD, 
POF1B, IL7R, and MYO1E, whereas tumor tissues showed 
increased expressions of SPINK1, CXCL9, AGFG1, and 
IQGAP3 (Figure 11).

Figure 9.  Differential expression of model genes in tumor tissues and normal tissues in the Cancer Genome Atlas database.

http://kmplot.com/analysis/index.php?p=service
http://kmplot.com/analysis/index.php?p=service
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DISCUSSION
There will be more than 1 million cases of liver cancer in 
2025, a steadily rising rate.14 Cuproptosis, a new form of 
programmed cell death, exhibits unique characteristics 
that set it apart from oxidative stress-related cell death, 
which is positively associated with cancer progression.

Through the application of univariate regression, LASSO 
Cox regression, and multifactor regression analyses, 9 
DECRGs were obtained. Following this, 9 DECRGs were 
employed to create a predictive risk model, assessed 
through survival, mutational, and independent prognostic 
analyses, demonstrating strong predictive capabilities.

Figure 10.  Survival curve analysis of genes associated with hepatocellular carcinoma prognosis at high and low expression levels. A-I: Survival 
curve analysis of 9 genes associated with the hepatocellular carcinoma prognosis model at high and low expression.
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Figure  11.  Reverse transcription-quantitative polymerase chain reaction detection of mRNA expression of hepatocellular carcinoma 
prognosis-related genes in tumor tissues and normal tissues. A-I: Expression levels of 9 genes associated with the hepatocellular carcinoma 
prognosis model in tumor tissues and normal tissues.
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It has been reported that some model genes are associ-
ated with the prognosis and progression of liver cancer and 
other tumors. AGGF1 is a common oncogene with high 
levels within tumors such as glioblastoma, colorectal, and 
gastric cancers. Notably, AGGF1 can promote angiogene-
sis of liver cancer, is overexpressed in liver cancer, and pre-
dicts poor prognosis.15 In addition to this, overexpression of 
AGGF1 significantly promotes HCC progression by rescue 
experiments.16 These results are in agreement with this 
study, but no further exploration in animal experiments 
was pursued. Xi et  al17 found that HBV induced S100A9 
to activate RAGE/TLR4-ROS signals, which promoted the 
growth and metastasis of HCC.18 This study’s results are 
consistent with previous findings that S100A9 is related 
to poor prognosis in HCC patients. Man et al20 found that 
SPINK1 knockout can inhibit the growth of liver cancer 
and its ability to resist chemotherapy.19 FTCD shows a high 
level of expression in the liver, yet its expression is markedly 
reduced in HCC. Regularly, the use of FTCD immunostain-
ing, either singly or alongside other proteins, has demon-
strated considerable diagnostic importance in the initial 
detection of HCC. Low levels of FTCD in HCC patients are 
associated with poor prognoses, while cirrhosis and low 
levels of FTCD are associated with a significantly higher 
risk of HCC.20 Hepatocellular carcinoma tumors that 
express high levels of CXCL3 are associated with a worse 
prognosis compared to those with low CXCL3 expres-
sion. In addition, Zhang et al22 showed that CXCL3 played 
a key role in humoral immune infiltration in the develop-
ment of cirrhosis-related liver cancer.21 At present, there 
is no study on the relationship between MYO1E and liver 
cancer, but the study by Liu et  al23 showed that MYO1E 
is mainly expressed in pancreatic adenocarcinoma (PAAD) 
and is negatively correlated with the survival and prognosis 
of patients.22 This is in line with the survival curve analysis 
outcomes for varying MYO1E expression, suggesting that 
MYO1E may serve as a useful therapeutic target in HCC. 
POF1B is mainly expressed in polarized epithelial tissues, 
and the aberrant expression of POF1B is closely related to 
malignant tumors such as cutaneous squamous cell carci-
noma and lung adenocarcinoma. Fourteen genes, including 
POF1B, have previously been combined to form a prog-
nostic model for predicting HCC prognosis with vascular 
infiltration,23 which implies that POF1B could be a novel bio-
marker for HCC prognosis. However, at present, the poten-
tial mechanisms linking the prognosis of HCC patients 
with these 9 genes remain unclear, which can be the focus  
of future research.

A significant difference in feature genes was found 
between neighboring non-tumor samples and HCC 

samples from the TCGA gene database and the 
GSE76427 dataset. Similar results were obtained by con-
ducting qRT-PCR analysis. In the GEPIA2 survival data, 
these genes showed significant associations with prog-
nosis. A regression coefficient suggests that IQGAP3 is 
the most important DECRG in terms of prognostic fac-
tors and prognostic prediction. IQGAP3 functions as a 
scaffolding protein, interacting with diverse structural 
proteins to alter cytoskeletal dynamics and intracellular 
signaling, thus influencing the proliferation and migration 
of tumors.24 IQGAP3 expression correlates with aggres-
sive clinicopathologic features.25 Moreover, IQGAP3 pro-
motes Epithelial-Mesenchymal Transition (EMT) and 
metastasis through activation of the Ras/ERK pathway 
and transforming growth factor and intracellular 26,27 and 
activation of the Wnt/EMT, and metastasis through acti-
vation of resistance in HCC cells. Various previous find-
ings support the inclusion of IQGAP3 as a prognostic 
model for HCC in this study. Moreover, the role of IQGAP3 
in the regulation of downstream targets and pathways in 
HCC needs to be deeply explored.

The study constructed a prognostic prediction model 
for HCC consisting of 9 CRGs based on the TCGA data-
base and the GEO database, which had good predictive 
accuracy, differentiation, and clinical efficacy. The vali-
dation demonstrated that the model could help identify 
high-risk populations, stratify disease risk management, 
and provide personalized prevention programs and that 
the predictive information obtained through the model 
could prevent the further development of poor prognosis 
of HCC.

This research, however, is subject to certain limitations. 
The data of this model is retrospective, lacking compre-
hensive verification from external datasets. Additionally, 
the sample size was small, despite partial expression test-
ing at the tissue level. A future study will assess the rele-
vance of the model for immunotherapy and examine how 
immunotherapy differs between low-risk and high-risk 
patients. Second, this study lacked a stratified analysis of 
the model in different subgroups. The model cannot be 
clinically assessed for its applicability to patients of dif-
ferent ages, genders, and stages of tumors. At the same 
time, the lack of studies on the robustness of the model 
also affects the judgment and treatment decision-mak-
ing for patients with complex clinical characteristics, 
which not only affects the promotion of the model in 
clinical practice but also reduces the acceptance and util-
ity of the model in the clinic. This is a problem that needs 
to be overcome and further explored in the future.
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In summary, a novel prognostic CRG model has been 
developed to enhance the prediction of HCC progno-
sis, aiding clinicians in evaluating patient outcomes and 
informing treatment strategy development.
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Supplementary Figure 1.  The workflow diagram for bioinformatics research.



Supplementary Table 1.  Analysis of clinical information data 
based on GEO database and TCGA data

Variables
TCGA cohort

 (N = 376)
GSE76427 cohort

 (N = 115)

Age ​ ​
  ≤ 65 years 235 65
  >65 years 141 50
Gender ​ ​
  Male 122 22
  Female 254 93
Classification ​ ​
  G1 55 NA
  G2 180 NA
  G3 123 NA
  G4 13 NA
  Unknown 5 NA
Staging ​ ​
  I 175 55
  II 86 35
  III 86 31
  IV 5 3
  Unknown 24 1
T classification ​ ​
  T1 185 NA
  T2 94 NA
  T3 81 NA
  T4 13 NA
  TX 1 NA
  Unknown 2 NA
M classification ​ ​
  M0 272 NA
  M1 4 NA
  MX 100 NA
N classification ​ ​
  N0 257 NA
  N1 4 NA
  N2 114 NA
  Unknown 1 NA
Overall survival ​ ​
  Dead 132 23
  Survived 244 92
Cancer Genome Atlas (TCGA).
TCGA and Gene Expression Omnibus (GEO) databases (GSE76427) 
databases.

Supplementary Table 2.  Abbreviations

Genes Name

NFE2L2	

NLRP3	

ATP7B	

ATP7A	

SLC31A1	

FDX1	

LIAS	

LIPT1	

LIPT2	

DLD

DLAT

PDHA1

PDHB	

MTF1

GLS

CDKN2A	

DBT

GCSH

DLST	

Nuclear factor, erythroid 2 like 2

NACHT, LRR, and PYD domains-containing protein 3

P-type ATPase gene

Copper transporter copper-transporting ATPase 1

Solute carrier family 31 member 1

Ferredoxin 1

Lioyl synthase

Lipoyltransferase 1

Lipoyltransferase 2

Dihydrolipoamide dehydrogenase

dihydrolipoamide S-acetyltransferase

Pyruvate dehydrogenase E1 component subunit alpha

Pyruvate dehydrogenase beta subunit

Metal response element binding transcription factor 1

Glutaminase

cyclin-dependent kinase inhibitor 2a

Dihydrolipoamide branched chain transacylase E2

Glycine Cleavage System Protein H

dihydrolipoamide S-succinyltransferase


